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PHISH is a simple library for stream processing

Parallel Harness for Informatic Stream Hashing

phish swim in a stream

Open source, BSD license
http://www.sandia.gov/∼sjplimp/phish.html

Commercial: IBM InfoSphere, Esper, SQLstream

Open source: Twitter Storm, S4 (Yahoo!)

Other ?
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PHISH pheatures

Based on pipeline model:
datums flow thru compute processes (not threads)
move datums between processes via message passing
multiple processes work together to perform analysis
split stream to enable parallelism & store more state

Lightweight, portable C library
Message passing via MPI or sockets (zeroMQ)

Write compute kernels in C, C++, Fortran, Python, ...

No HDFS (parallel file system with data redundancy)

No fault-tolerance (blame it on MPI)

PHISH lingo:
minnow = stand-alone program, link to PHISH lib
school = set of identical minnows (for parallelism)
hook = connection between 2 schools
PHISH net(work) = multiple schools, hooked together
PHISH tales = the manual
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PHISH net for traditional MapReduce

Scatter

Scatter

Scatter

Scatter

....

Analyze

Analyze

Analyze

Analyze

....

Stats

snapshots IDs

files

Map Reduce

Scatter & analyze minnow schools for parallelism

Convert data from per-snapshot to per-particle

Enables trajectory analysis of individual particles



PHISH script for traditional MapReduce

minnow m scatter file1.dump file2.dump ...
minnow r analyze -dist 3.0
minnow s stats 10000

hook m hashed r
hook r single s

school m 16
school r 16
school s 1 invoke python

Input script ⇒ bait.py ⇒ mpiexec or shell-script



PHISH net for streaming MapReduce

Scatter

Scatter

Scatter

Scatter

....

Analyze

Analyze

Analyze
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Stats

snapshots IDs

Map Reduce

Trigger

running
simulation

Streaming version:

snapshot data processed on-the-fly
user interaction & simulation “steering”

MapReduce is now fine-grained and continuous



Parallel streaming graph algorithms using PHISH

1 Sub-graph isomorphism

2 Triangle enumeration

3 Connected components

All 3 algorithms store entire graph (in distributed memory)

SGI and TriEnum are incremental, not true streaming

CC is constant-time, can keep-up with a stream rate



Sub-graph isomorphism

Data mining, needle-in-haystack anomaly search

Huge semantic graph with colored vertices, edges (labels)

SGI = find all occurrences of small target graph

Shared-memory algorithm by J Berry, MR with T Plantenga

F 0 0 0 0 0 2 5 3
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Streaming sub-graph isomorphism

real−time,

RMAT,

or files

Stats

SGI

SGI

SGI

SGI

edges

....

matches

N−step walks

Each edge stored twice, once by each vertex
SGI minnows generate walk 1 step at time ⇒ N iterations
Individual walks dropped if constraint not met
140 lines of Python!



Streaming triangle enumeration

Triangle

Triangle

Triangle

Triangle

....

real−time,

RMAT,

or files

Stats

edges

wedges

edges

triangles

Streaming version of J Cohen, CS&E, 11, 29-41 (2009)
Owners of (I,J) vertices exchange degree/neighbor info
Low-degree vertex does neighbor send
Nth new edge triggers N-1 wedge messages
90 lines of Python



Streaming connected components

Head

H’

T’

Tail

User

real−time,

RMAT,

or files

Edge

........

Work with C Phillips & J Berry

Details from Cindy tomorrow

v3

v6

A
v2

B
v4

C
A B

v4

v5
v3

v1
v2

(v2,v4) (B,v7) (C,v7)

Proc 0
Proc 1

Graph stored hierarchically
edges once, vertices duplicated

Embed queries in stream of edges

are Vi and Vj in same CC
what are components of size < N
and age < A

PHISH supports mixing, ring,
permutation, aging



Throughput benchmark with PHISH

Send zero-length datums along linear chain of processors

Send 1K-length datums at 400K/sec (bandwith limited)



Hashed all-to-all benchmark with PHISH

Send zero-length datums from P/2 procs to P/2 procs

Roll-over due to using multiple cores/node
147M datums/sec on 1024 procs (1 core/node)



FireHose benchmarks via PHISH

Optimized C versions of anomaly detection kernels

Parallelism via hashing to split stream across processes

Generator

Generator

Generator

ReadUDP

KeyHash

KeyHash

KeyHash

KeyHash

Anomaly

Anomaly

serial PHISH = 1/0/1 processes, parallel PHISH = 1/4/2 processes
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FireHose benchmark results

Dell box: dual hex-core 3.47 GHz Intel Xeons (X5690)

Maximum stream rates with no dropped packets

#1 = fixed, #2 = unbounded, #3 = two-level keys

Implementation Bench # Gen Rate (M/sec) LOC

C++ 2 5.6 275
Python #1 1 0.45 190
PHISH (serial) 2 5.5 390
PHISH (parallel) 4 10.0 525

C++ 1 1.9 415
Python #2 1 0.14 290
PHISH (serial) 1 1.9 525
PHISH (parallel) 2 3.4 665

C++ #3 1 1.5 495



Thanks & links & papers

Open-source packages (BSD license):

http://www.sandia.gov/∼sjplimp/phish.html (PHISH)

http://mapreduce.sandia.gov (MapReduce on top of MPI)

http://firehose.sandia.gov (FireHose - soon)
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JPDC, 73, 164 (2013).

Berry, et al, “Maintaining CC for infinite graph streams”,
BigMine ’13, 95 (2013).

Plimpton & Devine, “MapReduce in MPI for large-scale graph
algorithms”, Parallel Computing, 37, 610 (2011).


